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ABSTRACT

We present a full computation of do/ dq% for W, Z and virtual v production
to second-order in QCD. This includes gg, gg, and singlet g7+ gq collisions in ad-
dition to the usual non-singlet ¢g+ gg. The primary motivation is the importance
of quark-gluon collisions at Tevatron energies. Attention is restricted to high and
moderate g7, avoiding the resummation necessary at small transverse momen-
tum. We give analytic results for all constituent cross-sections do/dg4dy and,

for W and Z production, numerically convolute them with structure functions.
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1. Introduction

The transverse momentum (gr) distribution of single W production provides
a useful test of the standard model and a means of measuring o, Furthermore,
W production is a background to new physics. In this paper, we examine the
gr distributions of virtual photons and weak gauge bosons. We restrict our
attention to large gr and calculate to second order in QCD. By including the
full a? contribution, we reduce the theoretical errors associated with the leading
order (O(a,)) result. Using these expressions together with parton distribution

functions evolved at two-loop order, we make predictions for the gr distributions

at the SPS and Tevatron Colliders.

The second-order corrections have previously been calculated for the most
significant processes at CERN emnergies: the non-singlet contribution to ¢g an-
nihilation™ At Tevatron energies, however, quark-gluon scattering is equally
important. This process has already been approached for the specific case of
g9 — W42 jets.m The technique is to calculate the amplitude and then perform
all of the phase-space integrals numerically. Unfortunately, such computations
are valid only when the jets are well separated; singularities appear when the
jets become collinear with each other or the beam axis. These singularities are
related to the break-down of perturbation theory for the differential cross-section
in those cases. For example, when the invariant mass s2 of the two jets becomes
small, powers of o, are countered by factors of large logarithms, In 55, of the small
scale. For small, fixed sy, the differential cross-section cannot then be calculated
perturbatively. If we were really interested in the cross-section as a function of

s2, we would have to perform some sort of resummation to proceed.

The details of the small s3 behavior are not necessary if we are interested in
the inclusive cross-section for producing a W with any number of jets. Integrating

over the phase space of the jets, no small scale remains to give large logarithms

% For definiteness, we discuss W production. We loosely use the terms “final state parton”
and “jet” interchangably.



and so high-order contributions should be controlled. For 2-jet production, this
phase space integral diverges as the jets become collinear. The divergence is
cancelled by a similar divergence in the one-loop corrections to single-jet pro-
duction. One can cancel the divergences only after integrating over the relative
phase-space of the two jets. The complexity of the calculation lies in that this
integral must therefore be performed analytically rather than numerically.

When the W has small transverse momentum gr, there is again a small scale
and large logarithms In(g7/Q?). Perturbation theory for do/dg% breaks down
and one must either perform a resummation or restrict attention to the total
cross-section ¢ by integrating analytically in gp. These techniques have been
carried out to first order in QCDM, and some of the second-order terms have
been analyzed in the g7 — 0 limit' We have attempted neither method with our

second-order results and so do not consider very small values of gr.

Our purpose in this paper will be to extend the previous work on non-singlet
qq + qq scattering to qg, gg, and singlet gg + gg scattering. This will encompass
all of the second-order processes. We do not distinguish the polarizations of the

W bosons.

The first-order diagrams L for W production through gg annihilation are
shown in Fig. 1! Part of the second-order contribution comes from the interference
of these diagrams with the one-loop corrections V of Fig. 2. The rest comes from
two-jet production accompanying the W as in the diagrams G of Fig. 3. The
diagrams for W production through gg scattering can be obtained from L, V,
and G by crossing. Those for production through gg scattering can be similarly
obtained from G alone. The diagrams F of Fig. 4 give the remaining contributions
to qg scattering. The diagrams H of Fig 5 are for gq scattering. Hs through Hg
should be included only if either the initial two quarks or final two quarks are
identical.

1 The diagrams of Figs. 1 to 5 are taken from Ref. [2].



After notational preliminaries in Section 2, we outline the calculational pro-
cedure using dimensional regularization in Section 3. A discussion of how to
convert from MS factorization to any other scheme is described in Section 4. In
Section 5, we demonstrate that we can sideskip most of the difficulties associated
with 75 in dimensional regularization. Finally, in Section 6, we discuss numer-
ical techniques and results for W and Z production at the SPS and Tevatron
Colliders. The analytic parton level cross-sections for ¥* production with MS
factorization appear in Appendix A. Recipes for converting these formulae to W

or Z production are shown in Appendix B.

2. Notation

The four-momenta of the colliding hadrons are P; and P, while those of the
colliding partons are p; and p3. g is the four-momenta of the produced W boson,
Z boson, or virtual photon; ¢r and y are its transverse momentum and rapidity;

and @Q? = ¢?. The hadronic and constituent Mandelstam variables are defined

by:

S=(Pi+P)?, T=(Pi—q? U=(P-q)} (2.1)
s=(i+m), t=(-9? u=(p-q)’ (2.2)

When two-jets accompany the W, their invariant mass s3 is given by
sa=s+t+u—Q% (2.3)

sy sometimes appears in distributions as 1/(s2)4+ or (In(s2)/s2)) 4, which are
defined by

A A
| s s —tte) = [ dsa - (5(e2) - 500), (2.4)
0 0 S2

(82)4+

/;A ds; (111 82)A+ Foa) = /;A dog 11:-292 (’f(sz) _ #(0)). (2.5)

" A is generally used for the upper limit of 33 integrations and appears explicitly



in some formulas.

The group structure of QCD is handled generically with N¢ the dimension
of a single fermion representation and the Casimir Cr defined by 3 T%T?® = Cp.
For QCD, these are

. .
N¢ =3, Cr = 3" (2.6)

5
TR -_ 5. (2.7)

3. Procedure

We will now briefly review the procedure of the calculation to fix notation
and indicate to the reader what is involved. Much of this discussion is taken from

Ellis et. al., and we refer the reader there or to several reviews for more detail™”

We want to calculate a quantity d& that can be convoluted with structure

functions to obtain the hadronic cross-section:

dUAB
qu dy

sda;j

Z/dml dzg fA(zy, M?) ff(zz,Mz) T du ——L(a,(M?),21P1, 22 P).

(3.1)
A and B indicate hadron flavors; 7 and j indicate parton flavors. There are two
sources of terms subleading in a,: those from subleading terms of dé and those
from subleading terms in the definition and evolution of the structure functions.
Both will appear in the bare calculation of parton cross-sections and must be

disentangled to yield dé&.

STEP 1. Calculate the bare result sdo/dtdu of the Feynman graphs. The
loop integrals and the phase space integrals for the particles accompanying the
W are done with dimensional regularization. We will denote the first and second-

order contributions by do{?) and do(?).



STEP 2. Fix your conventions for defining the relationship between the

renormalized and bare structure functions:

) = [ L [ote 1)+ R 0)] Fhe(5). (02

In general, R has the form,

Rici(os M) = 2 Ps()p S (M) 4 ), (89)

where the O(e) pieces are irrelevant and where the P are the Altarelli-Parisi

functions:
9‘—4(2) [(; +Z) + 5( )] ]
Pyylz) = CFl_i'_Q;"_‘_’fX,
1

Py y(z) = 2Ne [ STt L 1-2)-— 2] (HNC - —TR) §(1 — 2),

(1— 6

Pyy(z) = _(Z +(1-2) )
(3.4)
The distribution 1/(1 — z)4 is defined by |

/dz 1) —/oldzw. (3.5)

(1-2)+ 1-2

The definition of the non-singular part C;—; of Eq. (3.3) is undetermined,
however, and reflects a freedom of choice in the definition of the structure func-

tions. For our analytic calculations, we have chosen the MS factorization scheme

defined by

cMs —o. (3.6)



STEP 3. Calculate the factorized cross-section dg. It is given at order a? by:

s doiy; s doyj

dt du = dt du
%s 1d R M2Md? 5 2
_Ezk:/o 21 Ry i(z1, )T (z1(s+t— Q%) + u)
pPr—ap:
1 (1)
s 2y 3doj; 2
“'é?zk:/o dzz Rucjlza, M?) 22tk §(za(s +u — Q) + ).
pg—)zng

(3.7)

The z; and 27 integrals are trivial.

STEP 4. The two-jet collinear divergences will be associated with the limit
83 — 0 and will appear as inverse powers such as s; 1=¢_ Such terms will cause
divergences when the z; and z; integrals are performed. These poles may be

made manifest by using the identity:

1 —
(32)1+e -

1 1 1
—=6(sz2) |1 —eln A + ~¢e?1n? A] + —€ (hﬁ) -I—O(ez).
€ 2 (32) A+ 82 A+
(3.8)
The poles will now all cancel explicitly between all collinear divergences, the
virtual diagrams, and the factorization pieces. The results of this step are given

in Appendix A.

STEP 5. Now that the poles are gone, we have an expression that can be
evaluated numerically. We are ready to convolve dg with the structure functions
to compute the hadronic cross-section do/dgidy. For the sake of evaluating

distributions such as 1/(s2) 44, it is convenient to rewrite the z; and z; integrals

as™"
1 1 1 A
dz; 1
dm1/ dzq,6(sy) — dsy
/o 0 (s2) e (215 +T - Q%) Jo
1 4 (3.9)
das 2
+/ dsy
ey (225 + T = Q2) Jo



where

Ay =U+z1(S+ T - Q%), (3.10)

Ay = JTre¥ (23S + T — Q%) + Q% + 23(U - @?), (3.11)
_|Q*+ 4k 9%
VI =T+ \/; (3.12)

4. Factorization Schemes

For the analytic results displayed in Appendix A, we used MS factorization.
But one may make contact with any factorization scheme simply by adding the

correction terms determined by Eq. (3.7):

8 d&u S d&f‘}_s
dt du = dt du

sd (1)

a, 1 Tkj

2 (— 2
21r(s+t—Q2)Ck‘_'(s+t—Q2’M) dt

pr——up1 [(s+t—Q?)
.sda'g: )
dt

ﬂ;C ( —t
2 (s +u — Q%) k=i\g fu— Q2

M?)
pa——tpa [(s4+u—Q3?)

(4.1)

In particular, for our numeric work we have used the structure functions

of Diemoz, Ferroni, Longo, and Martinelli ™ They define the quark structure

functions from deep inelastic scattering so that

:I:Fz(m, Qz) =T [fq(xa Qz) + fq-(:l:, Qz)] . (4'2)



- . . 10
This choice determines'”

In(1 — ) 3 1 1+ 22
Cueq(2) =Cp 1—{—.22 (—) — = - Inz
2-a(2) ( ) 1—-z J, 2(1-2); 1-z
+3+22—(§+-;—7r2> 5(1—z):|, (4.3)

Cyey(2) =% [(22 +(1-2)})In (1 — z) +62(1 — z)] :

For the remaining coeflicients, Diemoz et. al. take the simplest choice which

enforces momentum conservation:
Cgeq(z) = —Cag(2) Cgeyg(2) = —4TRCye—g(2). (4.4)

In the preceeding, the subscript g represents a single flavor of quark and the

coefficient functions are defined identically for anti-quarks.

To integrate Eq. (4.1) as in Step 5, one may transform the distributions in z

to the variable s3 using the following identities:

21 E——s +;i Qz, | (4'5)
5(1 — 21) =(32 - ’U.)&(.Sz), (4.6)
————————1 =82 —u 1 82)ln é :
o =) g e 5 (7)
In(1 — 2;) (o — In s9 1 I
( l-=n )+‘(2 )[( 82 )A+ (~"2)A+1(2 )
+ 36(s2) 10 -‘3- I (4.8)

The remaining relations come from taking z; + 23 and u « ¢ in the above.



5. Regularization of ;s

The implementation of 45 in dimensional regularization is subtle and prob-
lematical. The technique we choose is completely straightforward to implement
calculationally, but the underlying assumptions should be carefully laid out. We
shall make a simple definition following Chanowitz et. al™ in cases where we
have traces involving an even number of 45’s. In the cases we have involving an
odd number, the extension of the Dirac algebra from 4 to d dimensions will be

shown to be irrelevant, and we will simply evaluate the traces in 4 dimensions.
From Chanowitz et. al., we assume the following properties of vs:

(1) v5 anticommutes with all ¥# in d dimensions,
(2) 7 =1,

(3) tr(ysy ¥ vPyT) = 4ie*’PT + O(d — 4) x ambiguity

on the four-dimensional subspace u,v,p,7 =0,1,2,3,
and we assume
(4) tr(y5v#y¥~P4T) is anti-symmetric.

The anomaly is intimately related to the fact that the ambiguous term above
cannot be explicitly defined. In our calculation, however, this term will never be

relevant.

Let us now consider squared amplitudes where each fermion loop connects to
an even number of W’s. For example, consider |G2|2 shown in Figure 6. Each W
vertex has vectorial and axial contributions. We first argue that the VA terms of
the squared amplitude do not contribute. This is because the Dirac traces will
all have one factor of tr(vysy#vYyPy7). Once we have performed the phase space
integrals over p3 and p4, only three vectors remain: p;, p2, and q. But there is no
non-zero contraction of three vectors with the anti-symmetric tr(ysy#y“yPy7).

~ So the VA terms vanish once integrated over the phase space of the final partons.

10



In the limit of massless fermions, the AA terms are identical to the VV terms
because one 75 can be anticommuted to the other and removed with 72 = 1. We

can therefore treat W’s as photons if we use the effective coupling constant:
9' =g + 9% (5.1)

The only interferences that involve fermion loops connected to an odd number
of W’s and that do not vanish are 2Re(F5 + Fg)*(F7 + Fg) and its brothers
2Re(H; + H2)*(H3 + Hy4) and 2Re(Hs + Hg)*(H7 + Hsg). In neither case is there
any divergence when we do the momentum integrals; the regularization does not
matter and we can do the traces unambiguously in 4 dimensions. To show this,
it is not enough to know that the resulting answer is in fact finite. A trace of
order 4 —d could multiply a divergent integral that gave 1/(4—d). If we took the
limit d — 4 before doing the integral, we would falsely conclude that the result

was zero. We must verify that this does not occur.

We use an argument by J.C. Collins™” to show that the coefficient of possible
divergences is ezactly zero for any d near 4. Consider 2Re(F§Fg). There are two
ways to route the large gy of the W as shown in Figure 7. Divergences can
arise when the other lines have small transverse momentum and correspond to
potential collinear singularities of the gluons. In the first routing, the left gluon
can become collinear with p; and ps. The only unsuppressed gluon polarization
€~ is then parallel to its momentum k. In this limit, the gluon’s upper vertex
may be rewritten as e~ -I' = k- T'/ IE‘ k -T is in a form where we can apply a
Ward identity; it must cancel as shown in Figure gl Theréfore, our potential
divergence must cancel against the similar one of 2Re(F;F3) shown in Figure 9.
In a similar way, all divergences of 2Re(F5 + Fg)*(F7 + Fg) must pair up and
cancel. This argument does not rely on d being exactly 4 and is independent of

the nature of the W vertex and the precise definition of vs.

To conclude this section, we note that it would be nice to check the entire

calculation by repeating it with an explicit definition of 5 in d dimensions such

11



as 170717273 Such a definition avoids the ambiguity of tr(ysy#+”y#y") but no
longer anticommutes with all of the 4#. The calculation becomes more difficult

computationally, and we have not attempted it.

6. Numerical Techniques and Results

The dz ds; integrands of Eq. (3.9) are in fact quite peaked at low values of
z and s3. To numerically integrate in a reasonable amount of time, it behooves
us to transform to new variables that smooth out the integrand. The peak in s;
occurs around sy ~ g% and the peak in the outer z integration around \/—q%
above its lower limit z,in = eiy\ﬁ': . The integrand is smoothed out by changing

variables to

¢ = In ((z — Cpmin) + e\/q:%) , (6.1)

¢ =In(s3 +€q}) . (6.2)

By trial and error, € = 0.1 gives good convergence.

We will be working with five flavors and ignore the top quark. Correspond-

ingly, we evolve a,(M?) using Ny =5 in

da,  Bo ;. B, ,
d(ln M2) Tar ™ T 16m2 (6-3)
where
2 8
Bo =11 — §Nf, B =102 — 3?]V'f. (6.4)

For Agcp, calculated with five flavors, we will consider 100, 175, and 250 MeV,
which match to four-flavor values of 160, 260, and 360 Mev at the b threshold.

When not otherwise indicated, we will in particular use the middle value of

~ A(4 flavors) = 260 MeV.

12



We have chosen the renormalization scale u? of the constituent cross-section
to be the same as the factorization scale M? of the structure functions. We will
examine M? at both of the physical scales of the problem: Q2 and g%. The

sensitivity to this choice will help give us an error estimate for the calculation.

Finally, our particular choices of weak parameters are:
My = 81.8 GeV, Mgz = 92.6 GeV (6.5)

g My, :

sin“ 0y, =1 — 7 sin 8, = 0.219. (6.6)
Z

The results of all this machinery are shown in Fig. 10 for WT and Z pro-
duction at the Tevatron. We have normalized the differential cross-sections with
respect to the total cross-sections. The analytic form of the total cross-sections
are known to first non-leading order"” and we have convolved with the Diemoz
et. al. structure functions that we use for the rest of our computation. For the
factorization scale M2 = Q? and A(4 flavors) = 260 MeV, these cross-sections

are:

o(Wt)=9.681nb, o(Z)=6.05nb for /s =1.8TeV, M2=0Q? (6.7)

o(W¥)=280mb, o(2)=1781b for 5 =630 GeV, M? =@ (6.8)

For contact with previous work, we show the predictions along with experi-
mental data” for SPS energies in Fig. 11. But the data is not yet very sensitive
to the size of the second-order contributions. Indeed, on the large logarithmic
scale of these graphs, little difference between the first and second order calcu-

lations could be seen, and so these graphs are not very informative about our

* Consistent with our coupling constant definitions in Appendix B, we have used weak
coupling of a, = v2G rMZ /m. Note that the exact choice of normalization cancels in the
ratio do/dgr/qr/e.

13



calculation. We have instead tabulated our results in Tables 1 and 2. Results
are given for the choices M? = Q% and M? = g% of factorization scale. In the

latter case, we have evaluated the total cross-section at M? = (g2). This scale is
roughly (20 GeV)? at the Tevatron and (10 GeV)? at the SPS™"

o(W*)=9.54nb, o(Z)=6.13nb for /s = 1.8 TeV, M? = (20 GeV)?
(6.9)

o(W*t)=3.80nb, o(Z)=256nb for /s =630 GeV, M? = (10 GeV)?
(6.10)

Our results are given for ¢gr down to 20 GeV. This is roughly where the
need for resummation becomes important as resummed first-order results become

equal to first-order perturbative results!”

To show the second-order results visually, Figure 12 displays the K-factor:
the ratio of the total of first and second order contributions to the first alone.
Though convenient to plot, the K-factor is unphysical and sensitive to the choice
of scale. Here, our convention is to normalize with respect to the first order
cross-section at M? = Q2. In this graph, one can see the difference between the

choice of scale M? = Q% and M? = g% for the full second-order cross-section.

Fig. 13 explores more deeply the dependence on the choice of scale by plotting
the results vs. M for a fixed choice of gr. It is clear that the second order
contribution helps stabilize the first order one, making it less sensitive to the
choice of scale. There are two scales here which are sometimes attached favored
status in the literature: the scale where the second order correction is zero and
the scale where the total turns over. Looking at a smaller value of g7 in Fig. 14,
however, both of these scales disappear. Numerically, the contribution of gg —
ggdW is what keeps the second order correction positive here at small M. In our
opinion, the most straightforward thing to do is to focus on the physical scales
g% and Q? and use the discrepancy between them to estimate the error. Note

= that Figures 13 and 14 also show the sensitivity of the results to Agcp.

14



- There are four sources of theoretical error: the choice of renormalization scale
that minimizes higher-order corrections, the value of Agcp, the parametrization
of the structure functions, and the growing need for resummation at small g¢p.
We have addressed the first two by examining the variation when A(4 flavors) =
160, 260, and 360 and M? =Q?, ¢%. For the Tevatron, the variation at the low
gr and high g7 ends of our results is roughly +10% relative to the mean of the
M? = Q? and M? = ¢Z values listed in Table 1. We have taken this error for
the entire range, giving the band drawn in Figure 10. This is not an extremely
conservative estimate as only some sources of error can be addressed. However,

it would be surprising if the true error were more than double this estimate.

For the SPS, we find a variation of roughly +10% at the low ¢ end and £35%
at the high g7 end. We have extrapolated for intermediate g7 to get the band of
Figure 11. It is worth noting that taking the ratio of do/dg3 with o improved
the error for low gr and aggravated it for high gr: the variations in do/dg2 alone
were roughly +£15% and £20% respectively. For the Tevatron, taking the ratio
changed the variation only slightly.

Finally, to give the reader a feel for the numerical contributions of different

processes, we show their relative contribution at M? = Q2 in Figs. 15 and 16.

Acknowledgements: We are greatly indebted to Keith Ellis for his advice and

help in this project. Many analytic results for generic integrals were obtained
from him and checked by us numerically. We would also like to thank John
Collins for useful discussions and for the argument concerning 45 explained in

the text.
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APPENDIX A

In this appendix, we display the analytical results for sdo/d¢du for the various
processes of interest. MS factorization has been used with dimensional regular-

ization in 4 — 2¢ dimensions.

For notational simplicity, the results are given for massive photon production

rather than directly for W and Z production. ef is the appropriate fermion

charge of +% or —%. eiz- is slightly loose notation for the product of the two

fermion charges relevant to the diagram at hand. With the exception of 2(Fs5 +
Fg)*(F7 + Fg), all of the diagrams calculated give identical results for axial and
vectorial photons. For the exception, the different results are labelled by the
superscripts (A) and (V).

Not all interference terms are listed. Having performed the phase-space in-
tegral on the final particles accompanying the photon, there are some simple

relations. Interchanging u « ¢ in the results will take
Fi,F3,F5,F¢ « Fo,F4,F7,Fs H,,H,,Hs,H¢ « H3,Hy, Hy,Hg. (A.l)

Recall that diagrams Hs through Hg should not be included if both the two initial
quarks and the two final quarks are identical. For non-identical final quarks, some
of the H’s are related to the F’s by:

|H; + Hs|* = [Hs + H¢|® = |Fs + Fg/?,

2(H1 + Hz)*(H;; + H4) = 2(F5 + Fs)*(F'( + Fs). (A.Z)

For identical final quarks, the H combinations will be smaller than the F combi-

nations by the symmetry factor % Finally, we have the relation
2(F{" + FY)(F(Y + FY) = 0.

2(F1 + F2)*(F3 + F4) is zero for vectorial photons, W bosons, and Z bosons.

~ The squared diagram has a loop of the final fermions connected to three gauge

16



bosons: two gluons and the photon. Any vectorial contribution will vanish by
Furry’s Theorem. For W’s and Z’s, the axial contribution is proportional to

trT = 0 and so also vanishes.

We will now present the results associated with the various terms of the
squared diagrams. Many of the results for the F and H diagrams have already
been presented by Ellis, et. al.  Unfortunately, though they give exactly the
combinations relevant to photon production, their expressions sum too many
terms to be applied to W production. (See Appendix B.) We have recalculated

these processes in the relevant combinations.

We will make use of the following definitions:

K = 2malNCp =) (4’”‘2>€ (”sz (A.3)

I'(l—¢) \ Q2 ut
K K
qu = N_é’ qu - NC(ZNCCF)’ Kgy - (2NCCF)2 (A'4)
A? = (u + )% — 45,Q? (A.5)

u 2(0? — 4 —
To(Q?,u,t) = [(1-5) (-t-+i-)+2Q (@ D_2. (a6)

ut

To(Q?,u,t) is proportional to the squared matrix element for the lowest order

process for gg — gv*.
2 1 2
A.l. THE DIAGRAMS >  Li+ >, Vi

For g7 scattering, the result is taken directly from Ellis, et. al”? The corre-
sponding result for gg can be obtained by analytic continuation. The continuation
is not completely trivial as one must take care with the branches of the logarithms
that arise in the second-order cross-term 2Re [(Zf=1 L;)* (Z:lil V,)] These

~ logarithms yield terms like i when continued. If the result were calculated in

17



Euclidean space, where it is real, and continued to Minkowski space, unsquared
im’s would be dropped when we took the real part at the end. Keeping this in
mind, it is possible to reconstruct the original and analytic Euclidean expression.
It is then safe to continue Euclidean s to Euclidean » and visa versa. Then we

continue back to Minkowski space and finish by taking the real part.

The result for both processes can then be written in the following form to

order o?:

8 do 2 Kgq 2
( I . = efT a,(M ) S(s,t,u,R,t,R,u,Rm) (A7)
d K L
(s a’) - _eﬁ_‘.’i a,(Mz) [S(u,t,.s,Rut,Rm,Rt‘)
dt s
ag
a
- ﬁTo(Qz,s,t)CF‘rrz} (A.8)

18



_ 2 a, I'(1 —¢) 47”"2 )
S(satau:RahR!u’Rt“) - TO(Q ){1 o 2w F(l - 25)

8

x [_@C'_FJF_NL) 1 (3CF _2CsIn
€

2
+ Nc+Ncln————TR>

€2 Q2 t
2 1 s
+ — § w2Cp — —Nc7r — 8Cf — CpIn? 52—
1 s ut M?
+ -é'NC (1112 "Q—z —111 Q4 ) + ( NC - —TR) Q2 + -NCRtu:I }

a, s 3 s+t s+u
— C
+27r{ F(s+u+s—+—t+ u + 3 )

t (452 + 25t + 4su + tu) t
+ia| g (S o)
(452 + 2su + 4st + tu) U
+ia| g (0 G+

+ (2Cf — N¢) (Zln

s 2s Q% (t? +u?)
QZ(u+mf*u+w)“ wu+u>>

_ (265 - No) (.92 + (s +u)? Ry + st + (s +t)? Rau)}

ut ut
(A.9)
R,: = Ry(s,t), R,, = Ri(s,u), Ry = Ry(t,u) (A.10)
B =1n] % |1n| L] = = Ryt A1l
ut—nla Mozl T g T 2(t,u) (A.11)
R,, = Ry(s,u) (A.12)

~ 8 14 w2
Rta =In (—2> In a + ? - R](S,t) (A13)

8 t 1., s
R](S,t) In (@) In (Q2 —3) +—2' =T}

(A.14)




1 24\ 1 2 _y . 2 : 2
Ry(t,u) = Eln2 (%) + Eln2 (QQ2 ) + Li (QZQ_ t) + Lip (a?-_z)
(A.15)

Liz 1s the dilogarithm function:

Liz(z) = — /: %ln(l — z). (A.16)

The ultraviolet renormalization has been performed using MS subtraction.

2
A.2. THE DIAGRAMS ‘E?:l Gi| +|Fi+ F|* FOR ¢ — *

For completeness, we reproduce this result from Ellis, ef. al” These are the
diagrams which, for qg scattering, cancel the divergences of the previous one loop
processes. The contribution of |Fj 4+ F3|* may be isolated by considering only the

terms proportional to TR below.
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sdo Ky 9 a, (1 —€) samp\¢
dt du ef 3 a"{TO(Q uy8)8(s2) [271' - 26)( 2 )
2Cr + N 2 2
X [L—E‘:;—C) (3CF+ZCF1nQ—+Ncl Q—-—I——Nc——TR)]

+ —~—[(—Nc - —TR)ln ——i + (— c— -——TR)

2
&)
A% o
Qzut)) - 3Cp1n( Q? )]] + ‘2—7;T0(Q y Uy t)

2TR - TNC 2Cy (’u.t - Q232) ln(82/M2)
[3 (s2)a+ + (32) 4+ ln((u—32)(t—32)) +4CF< 32 )A+

als s2.42
+(Cr - %NC) (4(1 (azz/A)).H - (32§A+ ln((u —83)(t — Sf)(ut - stz)))] }

+ N¢ln? %+2CF1n(m> (

+(CF——NC)( +1n? (

K o? 8 2 s, (2Q%u +ts3 —2Q%s;3)  2Q%(t —u)
2
+ef?ﬂ{CF[(t—sz)2 T (t—s3) wut Hut = QPs5) ut(t—sz)]
11(s + Q%)  s%(3sy — 4t) 2s Q? 2(s+ Q%) 2@?
+NC["? ut 2ut(t —s3)?  u(t — s3) +W] +TR[§ ut _§t_2]

1 38 (Q% — u)? (Q% — )’
+2(Cr - ENC)ln(ut _ 5252) [u(u — 82)(t — s2) + ut(t — 82)]

383 ) (s + Q%)
(u — s2)(t — s2) ut

(ut — @2s3) ) [4Q2(Q2 —t)? + 2(Q? + s) — s L5z 2.5]
(u — 82)(t — s2)/ Lut(ut — Q2s3) ut — Q%s; ut
M? ‘
o) g e - @) @ 7 ]
Q* —u 22 —u 2 Q@
G—a) 1t —s2) “?+§2_]}

1
+ Z(CF - ENc)ln(

+ CFln(

K o2
+ e ()
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2
;| FOR gg — Y*qg

A.3. THE DIAGRAMS |5 5_,

s do —ezK
dtdu T s 27

[A5(32) + BN¢ + CCF]

where

— € T 2\ ¢
3 () i

{ZCF+NC 2
xd=Z= 1= 4

1 u@?
+ - 3CF—ZCF1n| l + Nc+Ncln ) 3
€

€2 TR]

S | A? 7 A 3 A
e[ (28] e () -3(4)

: 2ol (%)}

—Cf — -Z—TR —2N¢cln

11
+ ['E'NC +
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s—1 6st 3s4+2u—7t 9s+4u—4t u-—t

P20 et Km0 (m-o7 Tt
3 (QF — t)? 2u — Q2 1
B ;t_‘i(ut — 33Q%)(t? — 452Q") - si2 LU lfstZ ) + % T s

v j(izQi;)t)z {(85‘“ In (ut iﬂ/‘:m) _ (%ﬁ_ﬁ@ﬁ)A ]
+1n( oM’ > [1 2 _(82+Q2)2+(3—Q:)2}

CEDCE A, 5t(52) 1

52 4 9 2 2 235t
+1 ( ) " 2ut + 3su — 3st + 83t + 25% ) +
n M2 [5t(32 —t) <4u u Su S 32 S (32 t)3

s2(4u+6s) 11 83— 4Q? 10 E

t(s2 —t)2 23 st t 12

In(sp/M?) 1[1 ) 2 ) u?
e R— — =7 t 9 4
( 82 A+ S Zt((u+)+(u+")+")+sz—t

Q2M2(82 - t)2 43,Q? N
+1n< 883t? )[ stt (ut = ,Q%) -2 2 1t 92s

st st? sul 261(32) At

RN CAC —t)2> _ <1n(sz/M2)) (s — Q%) + (t — Q7
" [(32)A+ g ( st? 32 At 2st
2ln (*’2(2‘?2 —u) - Q2t> [(sz - Q7))+ (2Q7 — u)z}

st 2st(sy — t)
1 54+Q%—s3+ A

+ Ealn (——_3+Q2—32—A

u+1 __'u,—ts (s 2 _,
_(32)A+(s+2u) (2 +a)(s+Q 2)]

s—Q* 1 5

2
) [43 + 3u + 283 + %(32 +2s — Q%) — %(32 - Q%
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2 0 sa(ut — 52Q?) ) [ s —4Q?
c—sl (Mz(sz—t)(sz—-u) 42 t

+ ut—l—szqf((z“ —1)? + s2(s2 —u) + Q*(4u — t))}

_[ 1 ln( ut — 53Q? )+(111(82/M2)>A+jlM(uz-i-(s-f-u)z)

(s2)a+ (s2 —t)(s2 —u) 89 st(ut — $3Q2?)
2. (u[02(2Q® — u) - Q% 2 _ w4 (s2—u)
+Rln( Q2 (ut — 53Q7) > [282—u—5Q RS ]
N %m (Q2(sz ~ u)"') [uz +(utt)!  ut—2Q 29— 0Q7

su? t(s2)a+ u? u
_ 80?2 2
N 3s —8Q _1] s <ln(.92/M )> [Zu-i—t}
4 89 A+ 8
s2\ [t—3Q% s,Q7 2 2st u+t
In (Mz) [ su + su? + sg—u (s3—1t)3 2(32 —1)2
24+3Q*  25,-4Q% 3u-13Q? 1 4 2 @Q?
L e +3e $p-4Q° 3u-13Q° 1 4 2 @
st(sg —t)  s(sa —1) st s t u t?
1 8+Q%—s34+ ) 22 3sQ? 2
- - —)%(289 — u —
MPE [ln (3+Q2-—32—/\) s+ Q? —-32] [Zt)\z (u =) (28 —u —t)

2
+ 2230 —u—t) + 3—'“;(u — 285)(t — 23) + %1(732 ~11s)
8 )

+ %(u — 8 —25s3) + u(13s2 + 95) — Tt(u + t)
7 3
4+ 89 | 19t — 1885 + 55 + —2'8(8 + t)

11 <3+Q2—32+)\>[ u+t
st

2
AT \s+Q2—s3—2A (s2)a+ (w* + (w +8)%) - s—t(Qz(u—232 — 3s)

AIl

+5Q* + squ — ;su — 242 + s%)

1
+ stA2(s + Q2 — 33)

+ s2t(2s3u + 6Q%u + 3Q%s; + Q“)]
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= = 4+ 4 3t
+s[(sz)A+( 2 g TRt
+;(f—2-(73 — 8u) + 5u + 7t — 163 )

s+ Q% —s59 \ 2 2

1 3y 2834+ Q% 507 QP

el - 3 — — —12
+ 2t(1632 11u + 13Q%) " + ) 242

2 882(Q% — u) s +4Q%  u(u+s) (E 2 )
t(s2 — u) (82 — )3 (82 —t)2 " s(s2—t) \t (s2)a+

_u2(3.52+Q2)+ 1 (( u +3sz—2u s)

stA2 s3 —t \(82)a+ 8 Tt
1 4 (Q? Q%ut .
+m[sz—t+;(T(u(u+s)+t(t+3)) u

(s2) 4+

2

A.4. THE DIAGRAMS sz=1 G;| FOR gg — v*qq
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sdo .2 Kgga_3 2CF 2Qt  5,Q? ~ u? + 83
dtdu T s 2n (32 —u)(Q? —u) \ su? u 8+ Q2% — 39
2 22 22( an _ . \2
+ % s ) - Ne u? + (s + Q%) 1g { M2Q%(s2 — )
3 .9(32 —u)(s + Q2 — s2) ssqu?

( QZ) 832
+ (2CF — Ng) ( 1;,)(32 —u) In (M2(32 - t;(Sz - U)>

N ( 2Cp _JY_C_) s+ (t —2Q?%)? In (32[32(2Q2 —t) - Qzu]2>
Q2 -t s ) (s2—u)(s+ Q% —s9) M25Q?(s3 — u)?

N ! 2Cf (23(32 +2Q?%) _ dsg(s2 + Q?)

ut —82Q2\ s+ Q2 — sy 89 — U

— 382 —-5Q2

+

455(Q% — 52) n , 183 + (t = 20%)?[52(2Q° — 1) — Q%
(82 —t)(s2 — u)(s + Q2 — ) (@% —t)(s2 — u)(s + Q% — 52)

u? + 2 sa(ut — 32Q%)
Gz Dz —w)| ™ (Mztsz =)o - u))

8CFs3 In 89 CF 4(2Q2——32) (8+Q2—82+/\)

+ Nc

- (s2 —u)?™ M2 A (s+ Q% —3s)) s+Q%—59—)
N |sa(u—1t)? {4Q%(Q% —5) 539(Q% — sz) 2 9
+T|: Al (s—}—Qz—sz 2s —8Q —:?._32

1( 3(u? — t%)? N 32 + Q?

— t
2ut — 3 2 11._17 3 2
T3\ Bals 1 Q253 T 51 OF — 5 et T 302Q) + 5 (1750 +3Q7)

2
+ ;—(32 —-21Q?%) -I- —ut — —(7 + 7t + 23))

20t —5Q") _ 9s2+2Q") | Haa+7QY) EZ] - (3+Q2—32+A)

(s + Q2 —s2) 4(s+ Q% —s3) 8s 8 s+Q%—33—)
1 s (82 +u?) 9 ) 233 ( su 2Q2)
+ 2CF [m (32Q T (2 —uy (ut — 52Q%) | — wt — 5207 \ (52 — )2 + .
839 4(sg —u) 1 1 2
+ N¢ [(32 R gy += = G 10T =) (4ut + s35 + (4s — 352)Q )}

N s 2
NGOy [3”‘?2(“ ot (A5 4+ 1) + (3 + 00t - 0

2
— 452Q%(s + Q2)] } + e"}—I—{;gi;—;{u >t}
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A.5. THE DIAGRAMS 2(F; + F3)*(F5 + Fg)

s do K,
dt du

1 1
2 q a

Cr — =N¢)—
fs (F 2 )ut

q &
9 {211, B s + 3uQ? s3s? (s +u)? 5%t

i t(az —-t)2 + 82 82(82 —-t)

+ —22-(11,2 + ut + st) <2Q2 —~ 1+ _u_(s = Qz))
A 82

u -+t 2.9 st 2 (

sy —u)?  4s%y?
8222

+ —[ 2(s2 + Q%) — 2us2Q? + —(5'u, +17¢)

+ 3stu + F(u, + 1) (u(u — 2 ) — 3(3t2 _ 252Q2))
+ ‘%";(u + t)(u2 - tZ)Z] 1n (f_—t_Qz;szj__A)

s+Q2—s53— )
N [2uQ2 B u? + 2s(s +u)] In (Q2(32 — t)z) }
t 32 st?

The coefficient of 1/s3 is zero when s3 — 0; so 1/(s2)4+ and 1/s2 are identical

here.

A.6. THE DIAGRAMS 2(F3 + Fy4)*(F5 + Fg)
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sdoe  , K4 ol 1
= —2(Cp — =N,
dtdu T s 271'( F™3 c)

g {ﬁsszQz(ut —2Q%) 3( _ ,1Q%(s2 —u)® +3s(t — 20%)7]
At (s + Q? — s7) A2 t(s + Q% — s3)
£ (oa(s? + @) + Ts@3 (s + Q%) 8° — Q°) + (@ + o} — 2570)

+2t—5s—8Q2> +3(u+2t+zsz+Q2 _ 22" | (@ - )
st t 89 — 1
8+ Q% -3 st(s + Q% — s3) o o2

1[ 24 332Q° 2 (s—Q2

(ut—32Q2)+ (u—sz)(s+32 —Qz)

N a2 s
u? 2 52,2 2 4
+—t—(Q —s)—u(3s—|—3.92—Q)——2—(t — 283t — 63Q“ + 2Q ))

n 1 <__2t__2 (2Q% + 52(45 — 52 — 1)) + (82 — u)?

st\s+Q?—s
2_ A

Y 2 ot — 442 - [(8+Q°—s2+
+3(s2 —t)° +25°+2st —4¢t° | | In P p—"

(2t +s (az(zQz —u) - Q%t) }
st(s + Q% — s2) st

A.7. THE DIAGRAMS |F; + Fy/?

We have corrected two typographic mistakes in the result appearing in Ellis,
et. al.The published version contained a sign mistake on the 2¢ term of the second

" line and a mistake in the overall group factor of Cr which should instead be 1/2.
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sdo'__ qqa 1 1 U 5
dt du Z s 21 {2(3+Q2—-32) (3 1) 4s
1 u 3u u
[ —os+ Et—u) +du— 2t ) 4 (25 +2 -
+/\2[3+Q2—sz< s+23( u)+du >+2s(s+ 52+ u)]
+3u2(u—-t) 2s—u—1t s+s
At s+ Q2% — sy s

() 2 (2502 b
(o) o (3“—t-"—2+ﬁ-23)

+ %(Zszt —ut — 2.9% + dusy — 3u? + 2889 — us)] * —1n (%)
e K R VR CRR LS| | PR R

A.8. THE DIAGRAMS |Fs5 + Fg/|?

sdo 5Ky a?
dtdu s 2n

1 (82——u) 82 2 32U S 8%
Xi{[z—zf—(z‘f‘l) it T \Ge !
2
1 Sy —u (32 —u)
2 _927% 11 —_ -2 1

MzQz(sz — t)? s st + 82Q? 82
2 1
% <3+1n( 88912 )) + [(.sz—t)2 + tz(sz—t)] n(Mz)
s(u? —1?) +2u+3s In s+Qr—s3+A +(u——t)(.s+.92——Q2)
tA3 tA 5+Q%2—s9—A tA2
89 —u 89 —u 3 9u+Ts— 53y
-1 Rt B At
st ( t ) Tyt 12

+

83 (89
422 (— _ 1) 6
+ st \ 1 T

w41 K]
+t(sz—t)-(32—t)2}
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A.9. THE DIAGRAMS 2(F§V) + ng))*(ng) + ng))

sdo Ky a?
=g —
dtdu T s 27

xl{ s(s? — ut) _utt (8482 —Q%)(u—1t)?

2 ut(s2 —u)(s2 —t) 2ut 2utA?
_1_[(3s+2.92)(u+t) 42 s —Q? B s(u—{—t)(u—t)z]
A 2ut s+ Q2 — s 2utA?

s+Q%—s3+2\ Q% [2(s2 —1)® + 53 + 57 o ut — 3,Q?
<n (emas) - e (o)
(32— Q) + (52— ) + 3 +37 [ [52(2Q° —u) — Q)"
1(Q% —u)(s + Q% — s3) 8Q?(s2 — t)?
3 (2Q% — ¢) [t? + 2(s% + 5% — s5t)] u Q% (s2 — t)?
=(H5 ) )

+

ut(Q? — t)(s + Q% — s2) st?
Kgyao?2 1
2-799 Zs -
+ef s 2 % 2{(u t)}

A.10. THE DIAGRAMS 2(F§A) + FgA))*(Ff,A) + FgA))

s do —equq—Cﬁ
dtdu T s 27

1{ s 1 2s (u —233)(u — 1)
*2\wt T t(s —w) Y
_ st <Q2(32 — t)(s2 —u))
ut stu

1[3s+ 239 2(s —u) 3 s(u? — %) 3 ] (3+Q2—32+A)

+X[ t s+ Q? — sy A2 ks s+Q%—3s3—)
2 2 u(u — 233) v [2(2Q? — u) — Q%]

_t(3+Q2—32) [Z(Q —t+ s+t—sg]1n Q%(ut — 52Q3?)

1[ o u? + 12 + 4s(u + 1) Q%*(ut — 32Q?)
+E[Q — 28 s+ Q% — sy ]ln( stu )}

1 Ko 1
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A.11. THE pIAGRAMS 2(H; + Hy)*(Hs + Hg)

2
= &2 (Cn — ZNa) 2
dt du ¢f ) 21r( F ZNC) t

x{QTzln(M)+( (53 — Q%)% + 52 ln(sz(ZQz—u)—Q

st2 33 —t)(s + Q2% — 37)

X { Factor of % if identical final quarks. }

st

A.12. THE DIAGRAMS 2(H; + Hj)*(Hy + Hs)

sdo  ,Kga? 1 2
dtdu 1 s ZW(CF ZNC)stu
2 42 2
X {ZszQzu LA (u+1t)? + [2.92(Q2 —3)—(u+t)?]ln (Q :2
u

X { Factor of % if identical final quarks. }

APPENDIX B

In this appendix, we show explicitly how to adapt the formula of Appendix
A to W and Z production. One must (1) include the flavor contractions and
Cabbibo angles appropriate to each result; (2) use the appropriate weak coupling
constants; and (3) sum over final flavors. The results are given below. One
should use the formula of Appendix A ignoring €? and ), F e? since charges and
final flavor sums will be displayed explicitly below when relevant. For the proper

~ overall normalization, o must be replaced by a,,/4 which we take in terms of Gp
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as

ayw \/EGFMI%V
T T T 4 (B.1)

Also, ignore any symmetry factors of % mentioned in the formula of Appendix A

as these are also displayed explicitly.

ud - Wt : 0 [(qq‘ — g7%) + (97 — 997") + 2TR |F1 + lez]
+ [Uii |Fs + Fs|> + Djj(u t)]
+ 045 [2(F1 + F2)*(Fs + Fg) + (u > t)]
ut — WY : (trD)&ij |F3 + F4|* + Ui |[F5 + Fg|?
+ 6;;Uii2(F3 + F4)*(F5 + Fs)
wu— W [Us |Fs + Fol* + Ujj(u o 1))
+ 6;Us2(Hy + Hz)*(H7 + Hy)
wd — W* U [Fs + Fof? + 2 0452(Hy + Hy)*(Hs + H)

(B.2)

ug = W : Uil(gg — ¢7") + (a9 — 997*)]
99— W+ : (trD)(99 — ad7")
more : u e d, do @, 0T, andU & D

in all the above

v and 7 are family indices of the colliding partons and are not to be implicitly

summed above. The matricies
0i; = |Ki;|*, Dij = Re(K'K)i;, Uij = Re(KK*);; (B.3)

contain the mixing angles. K is the KM matrix projected onto those particles
for which we are above threshold. (In particular, KK is not necessarily the unit

madtrix.)

The symmetry which allows us to take u « d as directed is a combination
of CP, isospin, and a 180 degree rotation of the plane of the W and the beam
~ (which is equivalent to P in that plane).
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In our numerical work, we have included the flavors through b and ignored

the ¢t quark. We have also ignored terms of order
(b content of proton) x (b mixing angles)

and so have approximated

cos?f, sin?é, 1

O~ | sin?6, cos?é, , DU~ 1 . (B.4)

For Z production, the combinations are:

ud— Z : Ay

ui — 7 : bijql [(qq‘ — 97*) + (97 — g97*) + 2R |F1 + F2|2]
+ 8ijg2 [2(F1 + F2 + F3 + Fq)* (Fs + Fs) + (u o )]
+ 6i(Nugl + Nag}) |Fs + Fuf” + Au

ud - Z : Ayg
1

uuw — Z 5 ,'J'g,zl [2(H1 + Hz)*(H5 + Hg + Hy + Hg) + ('u, «— t)] (B.5)
+ Auu

ug — Z : gil(g9 — ¢7v*) + (a9 — q97")]
99— Z : (NugZ + Nag3)(99 — 937")
more : u « d above

more : u + % and d « d above

where
Agp = '[93 |Fs + Fo|* + gj(u o t)]
+aa gy 288 +FY (R + FY) (B.6).
+9igiM2(rgY + PN (FFY + F(Y)

~ N, and N; are the number of up and down flavors for which we are above
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threshold. The effective charges are

gV = ( My \* (13 — 4Q sin? Oy)
4M2 ’

ML\T (B.7)
(A) — w
g (4Mg> s

=
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12)

13)

14)

15)

FIGURE CAPTIONS

Leading diagrams for g¢ — g¢v*. The looped lines are gluons; the wavy,
unlooped lines are photons or Ws.

Next-to-leading diagrams for ¢g — gv*.

Diagrams for ¢g — ggv*.

Diagrams for ¢g — qgv*.

Diagrams for gg — qgqv*.

Diagram for |G|’

The two routings of gr for 2Re(F;Fs).

Application of the Ward identity.

The divergence of 2Re(F;F3) that cancels the first one of Fig. 7.

W (solid) and Z (dashed) production at /s = 1.8 TeV. In each case, the

theoretical error estimate is delineated by the two lines.

Predictions and experiment for W production at /s = 630 GeV. The two

lines delineate the estimated error of the theoretical calculation.
do(M? = Q?)/de()(M? = Q?) and do(M? = g2)/do()(M? = Q?) where

do means do/d(g%) and do(1) is the first order contribution alone. Quanti-
ties are for W production at 4/5s = 1.8 TeV. The dashed line is da(l)(M 2=

a7)/do)(M? = Q7).

The dependence of do/d(g%) on the factorization scale M. This is for W+
production at /s = 1.8 TeV and gr =100 GeV. Separate lines are given
for A(4 flavors) = 160, 260, 360 MeV. Both 1st and 1st+2nd order results

are shown.
Same as Figure 13 but g7 = 20 GeV.
Relative contributions of different processes to W production at /s = 1.8

TeV using M? = Q2. First order contributions are (A) g7 — gW and (B)
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gg — gW. Second order contributions are from (C) [q§ — gW + ggW] +
[F1+Fa|?, (D) g9 — ¢W + qgW and gg — qW +3gW, (E) g9 — 9aW, (F)
remaining ¢§ — ggW, and (G) qqg — gqW and g7 — gqW.

16) Same as Fig. 15 but at /s = 630 GeV.
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TABLE CAPTIONS

1: (do/dgr)/qr/o in Gev~? as a function of g7 in GeV for /5 = 1.8 TeV and
A(4 flavors) = 260 MeV. Values for M? = Q% and M? = g% are given with
the total cross-section o evaluated at M? = Q? and M? = (q%) respectively.

2: Same as Table 1 but for /s = 630 GeV.
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qr W production Z production
I=Q' | M=q | =" | =g
20 || 4.85 x 10~* | 5.70 x 10~* || 5.03 x 10~* | 5.80 x 10~*
40 || 5.02 x 1075 | 5.56 x 1075 || 5.42 x 10~5 | 5.91 x 10~5
60 || 1.00 x 1075 | 1,06 x 10~% || 1.13 x 10~5 | 1.18 x 10~5
80 || 2.62 x 107° | 2.67 x 107° || 3.10 x 10~¢ | 3.12 x 10~¢
100 || 8.10 x 10~7 | 7.98 x 10~7 |1 9.99 x 10~7 | 9.75 x 10~7
120 || 2.81 x 1077 | 2.70 x 10~7 || 3.60 x 10~7 | 3.44 x 107
140 || 1.06 x 1077 | 1.00 x 10~7 || 1.41 x 10~7 | 1.33 x 10~ 7
160 || 4.30 x 1078 | 4.01 x 108 || 5.92 x 10~8 | 5.49 x 10~8
180 || 1.84 x 1078 | 1.69 x 108 || 2.61 x 10~% | 2.40 x 108
200 | 8.21 x 1079 | 7.49 x 1079 || 1.21 x 10~® | 1.10 x 10~8
Table 1.
qr W production Z production
M2=Qz Mz___q% M2=Q2 M2=q%
20 || 2.65 x 10~* | 2.48 x 107* | 2.88 x 10~* | 2.56 x 10~*
40 || 1.64 x 1075 | 1.36 x 105 |} 1.93 x 105 | 1.54 x 105
60 || 1.93 x 107® | 1.51 x 107% || 2.46 x 107® | 1.85 x 10~
80 || 2.91 x 10-7 | 2.15 x 107 || 4.02 x 107 | 2.88 x 107
100 |{ 4.88 x 1078 {3.44 x 1078 | 7.39 x 10~8 | 5.06 x 108
120 || 8.61 x 10™® | 5.89 x 107 | 1.43 x 107 | 9.56 x 10~°
140 || 1.53 x 10® | 1.01 x 1072 || 2.77 x 1079 | 1.82 x 10~°
160 || 2.62 x 1071° | 1.67 x 10710 || 5.20 x 1071° | 3.36 x 10-1°

Table 2.




